Tetrahedron Letters No.23, pp. 2553-2556, 1966. Pergamon Press Ltd. Printed in Great Britain.

STATHESIS OF TRIPHENYLING DERIVATIVES

by P. Longi, F. Greco and F. Mapelli

from Istituto di Ricerche "G. Donegani" - Montecatini S.p.A.

Milano

(Received 7 April 1966)

Radical and ionic polymerisations of 1-cyclohenene derivatives were unknown.

In attempting to obtain a polymer of 1-oyanocycloherene, we have now found that alkali metal amides, such as lithium dimethylamide, lead mainly to cyclic trimerisation of 1-cyanocycloherene, that is to 13,15,17-tricyanoperhydrotriphenylene:

Furthermore, dodecahydrotriphenylene:

together with methanol, have been found the main reaction products when 1-methoxycycloherene is contacted with boron trifluoride diethyletherate at room temperature.

1) - Synthesis of 13,15,17- tricyanoperhydrotriphenylene

 $LiN(CH_3)_2$ (0,95 g) and anhydrous toluene (160 cm³) are introduced, under nitrogen atmosphere, in a 250 cm³ three- necked flask. equipped with mechanical stirrer. A toluene solution of 1-cyano= cyclohexene (20 g in 40 cm³) is then slowly added through a drop= ping funnel. After 48 hours at 25°C, benzene (100 cm³) and 3 M HCl (100 $\rm cm^3$) are added, the upper layer is removed and washed with water. Solvents are then removed by distillation and the so= lid residue (14 g) is purified by crystallization from benzene. Colorless needles (m.p. = 268 - 8,5°C), soluble in chloroform, me= thylene chloride, ketones, aromatic hydrocarbons, aliphatic alcohols and dimethylformamide, slightly soluble in diethylether and cyclohe= mane, insoluble in aliphatic hydrocarbons, are thus obtained (found: C, 78,20; H, 8,74; N, 13,32; calc. for (C₇H₀N)_n: C, 78,54; H, 8,40; N, 13,06%). The molecular weight as determined by cryo= scopic measurements of benzene solutions, is 323. The product is therefore a trimer of 1-cyanocyclohexene (calc. for $(C_7H_qN)_3 = 321,5$) to which either a linear or a cyclic structure might be attributed. I.R. spectrum of the trimer (fig. 1) does not show any absorption band of sarbon - carbon double bond. Furthermore, dehydrogenation of the trimer by heating at 300°C with palladium-carbon for 10 hours under nitrogen atmosphere, yields a diethylether very soluble compound, whose melting point after crystallization from n-heptane

Fig. 1 - I.R. spectrum of 13,15,17-tricyanoperhydrotriphenylene in hexachlorobutadiene (-----) and Mujol (-----).

is 197 - 8°C (found: C, 96,64; H, 5,35; calc. for triphenylene $C_{16}H_{12}$; C,94,70; H, 5,30%; m.p. with authentic sample of triphenylene: 197-8°C; picrate m.p. = 223°C). Since this dehydrogenation product is recognized as triphenylene, we can conclude for a cyclic structure of the trimer, that is to say (in the very likely hypothesis of a head-to-tail enchainment of the monomeric unite) for: 13,15,17-tricyanoperhydrotriphenylene.

Like perhydrotriphenylene (1), 13,15,17-tricyanoperhydrotriphenylene can form with several compounds, such as aliphatic and aromatic hydrocarbons, alcohols etc., clathrate inclusion compounds from which included compounds may be removed by heating, optionally under reduced pressure.

2) - Synthesis of dodecahydrotriphenylene

1-methoxycyclohexene (30 mmoles), anhydrous toluene (10 cm³) and boron trifluoride diethyletherate (15 mmoles) are introduced, under nitrogen atmosphere, in a 50 cm³ two-necked tube. After 48 hours at 25°C, the crude reaction product (1,6 g) is isolated by following the description of par. 1). Crystallization from boiling n-buthyl alcohol yields colorless needles (m.p. = 232 - 3°C) soluble in chloroform, benzene, acetone and n-heptane; slightly soluble in cold aliphatic alcohols (found: C, 89,88; E,10,06%; molecular weight from benzene solution, 240; calc. for dodecahydrotriphenylene C₁₈H₂₄; C, 89,94; H, 10,06%; molecular weight: 240,37).

A mixture of the purified product with authentic sample of dodecahydrotriphenylene (2) melts at 233°C.

Trimerization run afore-mentioned is repeated and the reaction mixture, when examined by gas-cromatography, shows the presence of methyl alcohol.

We can therefore conclude for the following total reaction:

REFERENCES

(1) M. Farina, G. Allegra, G. Natta, J. Am. Chem. Soc. 86, 516 (1964

(2) C. Mannich, Ber. 40, 153 (1907)